C.U.SHAH UNIVERSITY **Summer Examination-2016**

Subject Name : Differential and Integral Calculus

	Subject	Code : 4SC04MTC1	Branch: B.Sc.(Mathematic	s,Physics)
	Semeste	r:4 Date: 10/05/2016	Time : 02:30 To 05:30	Marks: 70
	Instruction (1) (2) (3) (4)	ons: Use of Programmable calculator & Instructions written on main answer Draw neat diagrams and figures (if Assume suitable data if needed.	any other electronic instrument is pro r book are strictly to be obeyed. necessary) at right places.	hibited.
Q-1 Atte	a) b) c) d) e) f) g) mpt any	Attempt the following questions Form the partial differential equat Define: node. State Green's theorem. If $F = xi + yj + zk$, then show th State Stoke's theorem. If $F = yz + zx + xy$ then find ∇H Show that $F = 3y^4i + 4x^3z^2j -$ four questions from Q-2 to Q-8	s: tion from $z = ax + by$. hat <i>F</i> is irrotational. <i>F</i> . $3x^2y^2k$ is solenoidal.	(14) (02) (02) (02) (02) (02) (02) (02)
Q-2		Attempt all questions		(14)
	a)	Evaluate $\int_c \bar{F} \cdot dR$, where $\bar{F} = (x)$	$(x^2 + y^2)i - 2xyj$ and C is the rectange	gle in the (07)
	b)	xy -plane bounded by $y = 0, x =$ State the necessary and sufficient to be a double point. Find the pos curve $a^4y^2 = x^4(2x^2 - 3a^2)$	a, y = b, x = 0. conditions for any point (x, y) on $f(x, y)$ on $f(x, y)$ on $f(x, y)$	(07) x, y) = 0 (07) on the
Q-3		Attempt all questions		(14)
	a)	Show that the curve $(a^2 + x^2)y =$	$= a^2 x$ has three points of inflexion.	(07)
0.4	b)	Prove that for vector function F , V	$\nabla \times (\nabla \times F) = \nabla (\nabla F) - \nabla^2 F.$	(07)
Q-4	a)	Change the order of integration \int_{0}^{∞}	$\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^{2}}{\sqrt{(y^{4} - a^{2}x^{2})}} dy dx \text{ and hence even}$	aluate the (07)
	b)	same. Verify Stoke's theorem for the ve the upper half surface of $x^2 + y^2$ xy -plane.	ector field $F = (2x - y)i - yz^2j - y$ + $z^2 = 1$, bounded by its projection	^{2}zk over (07) on the

Page 1 || 2

Q-5		Attempt all questions	(14)
	a)	(<i>i</i>) Form the partial differential equation from $F(x + y + z, x^2 + y^2 + z^2) = 0$. (<i>ii</i>) Find the differential equation of the set of all spheres whose centers lie on the z -axis	(07)
	b)	Find the directional derivative of $\phi = x^2 - y^2 + 2z^2$ at the point $P(1, 2, 3)$ in the direction of the line PQ where Q is the point (5, 0, 4). In what direction will it be maximum? Find the maximum value of it	(07)
Q-6		Attempt all questions	(14)
	a)	Define: gradient. Prove that $\nabla r^n = nr^{n-2}\bar{r}$, where $\bar{r} = xi + yj + zk$, $r = \bar{r} $.	
	b)	Evaluate $\iint_R (x + y)^2 dxdy$, where R is the parallelogram in the xy -plane with vertices (1,0), (3,1), (2,2), (0,1) using the transformation $y = x + y$ and	(07)
		v = x - 2v.	
Q-7		Attempt all questions	(14)
	a)	(<i>i</i>) Find the equations of the tangent plane and the normal to the surface $z^2 = 4(1 + x^2 + y^2)$ at (2, 2, 6).	(07)
		(<i>ii</i>) Solve: $yz p + zx q = xy$.	
	b)	Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$, where C is bounded by $y = x$ and $y = x^2$.	(07)
Q-8		Attempt all questions	(14)
-	a)	Prove that $(0, -2)$, $(2, 0)$ and $(-2, 0)$ are node of the curve	(07)
	- .	$x^4 - 4y^3 - 12y^2 - 8x^2 + 16 = 0.$	(a =)
	b)	(i) Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dxdy$, by changing to polar coordinates.	(07)
		(<i>ii</i>) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$.	

